
DETECTION AND CHARACTERIZATION OF THE TUMOR CHANGE BETWEEN TWO FDG PET SCANS USING
PARAMETRIC IMAGING

H. Necib, M. Dusart, B. Vanderlinden, I. Buvat.

IMNC - U8165 CNRS – Paris 7 – Paris 11, Orsay, France, Dosisoft, Cachan, France, Institut Jules Bordet, Bruxelles, Belgique.

necib@imnc.in2p3.fr, michelle.dusart@bordet.be, bruno.vanderlinden@bordet.be, buvat@imnc.in2p3.fr

ABSTRACT

Patient follow-up based on PET scans is a promising approach
for early assessment of tumor response and for detection of
tumor recurrence. In this work, we introduce a parametric
imaging method to detect and analyze the tumor changes
between 2 consecutive PET scans. Fifteen pairs of consecutives
PET/CT images obtained during the course of lung cancer
patient monitoring were considered. For each pair, after CT-
based registration of the PET images, the two PET datasets were
subtracted. A biparametric graph of subtracted voxel values
versus voxel values in the first scan was obtained. A model-
based analysis of this graph was used to identify the tumor
voxels in which significant changes occurred between the 2
scans, and yielded indices characterizing the changes. In our
patients, the proposed approach correctly identified all tumor
changes as confirmed using a conventional analysis. In
addition, the parametric imaging approach can reveal
heterogeneities in tumor response and does not require the
preliminary identification of the tumors.

Index Terms— Positron emission tomography, Tumors,
Registration, Biomedical monitoring

1. INTRODUCTION

Positron Emission Tomography (PET) might play a major role
in patient monitoring in a near future [1]. Indeed, this
functional imaging modality makes it possible to detect early
changes in metabolic activity of the tumor, before these
changes introduce anatomical abnormalities that can be seen
using conventional anatomical imaging modalities [2].

Tumor changes occurring between PET scans acquired before
and during the course of therapy are most often assessed
visually. Indices characterizing the tumor uptake, such as the
Standardized Uptake Values (SUV) [3] are also reported. This
requires the identification of each tumor, so that the SUV
corresponding to each tumor can then be calculated.
Recommendations about how to interpret SUV changes between
scans have been published [4] and are based on using
thresholds in SUV changes to classify tumor change. For
instance, a decrease in SUV greater than 25% associated with a
decrease in tumor volume as assessed visually is interpreted as
a partial metabolic response. These recommendations have
many limitations however [5], given the large variability in
SUV and volume estimation methods [6]. In addition, in this
approach, the tumor is considered as a whole, without
considering possible differences in behavior within the tumor,
such the presence of a necrotic or semi-necrotic regions.

The objective of this study was to propose a parametric imaging
method to assess tumor changes at the voxel level, without
averaging over pre-defined tumor regions. By retaining
information at the voxel level, such an approach might give
evidence, if any, of heterogeneous behavior within a tumor. In

addition, parametric imaging does not require a preliminary
identification of the tumors: all regions (related to the tumor(s)
or not) in which activity has significantly changed between the
two scans are first identified. The parametric images are then
further analyzed to distinguish changes related to tumor growth
or tumor response from other physiological changes.

2. MATERIALS AND METHODS

2.1. Data acquisition

The method was developed based on clinical cases, to make sure
our models accounted for all the complexity of real data.
Two lung cancer patients were considered, with eight tumors in
total. One patient underwent 3 Fluorine-18-fluorodeoxyglucose
(FDG) PET/CT scan, one prior to any therapy, the second 12
weeks after the beginning of chemotherapy (3 cycles) and the
third 11 weeks after (3 cycles). The second patient underwent 5
PET/CT scans, one prior to any therapy, the second 12 weeks
after the beginning of therapy (2 cycles), then 11 weeks after (4
cycles), then 12 weeks after (3 cycles), and finally 11 weeks
after (no cycles).

FDG PET/CT images were obtained on a GE Discovery LS
system 60 min post-injection of 4 MBq/kg. Images were
reconstructed using the ordered subset expectation
maximization algorithm [7] with 2 iterations and 28 subsets
and post-smoothed with a 5.45 mm FWHM Gaussian filter.
Attenuation was compensated for using the CT data and scatter
was corrected for using a convolution subtraction. In each
PET/CT scan, the PET (4.25 mm slice thickness, 128x128 pixels
of 3.91 mm x 3.91 mm) and CT (5 mm slice thickness, 512x512
pixels of 0.98 mm x 0.98 mm) images were co-registered.
To compare PET scans acquired before and over the course of
therapy, the images were converted in SUV units, by
normalizing the observed activity by the injected activity per
body weight corrected for radioactive decay.

2.2. Registration of consecutive PET scans

To compare two consecutive PET scans at a voxel level, these
scans are first registered so that a given voxel always
corresponds to the same volume element in the patient. Because
PET and CT scans acquired during the same imaging session are
already registered, the CT data associated with each PET scan are
used to realign the PET scans [8]. Indeed, the CT data include
more landmarks than the PET data to guide the registration
algorithm. The CT/CT registration is performed by considering
a rigid transform (3 translation and 3 rotation parameters),
which is optimized using a least mean square criterion within a
large volume of interest (PixiesTM software). The CT/CT
transformation matrix is then applied to the PET data. The
second scan (in time) is always realigned to match the first scan.
Only a small set of relevant slices given the tumor location(s) i s
registered. A preliminary investigation based on consistency
measurements [9, 10, 11] was performed to assess the
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performance of our registration approach in our context.

2.3. Parametric imaging

The 2 registered PET scans are first subtracted voxel-by-voxel.
The resulting dataset is then analyzed using a biparametric
approach. This analysis identifies the tumor regions in the
subtracted dataset. A parametric 3D image displaying only
voxels related to tumor changes is finally obtained.

2.3.1. Subtraction datasets and biparametric graphs
The 2 registered PET datasets PET1 and PET2 are first subtracted
voxel by voxel: PET1(i) – PET2(i), where i denotes the voxel.
A biparametric graph of PET1(i) – PET2(i) (y axis in SUV units)
versus PET1(i) (x axis in SUV units) is then obtained, with a
number of points equal to the number of voxels in the analyzed
dataset. In this graph, voxels that have not changed much
between the two scans will be near the x axis (y close to zero),
while voxels that have substantially changed will be far from
the x axis (high |y| values). In addition, tumor voxels will tend
to have high x values.  The location of the voxels in this
biparametric representation makes it possible to distinguish
changes related to the tumors from changes due to noise or
physiological uptakes.

2.3.2. Analysis of the biparametric graph
To distinguish tumor voxels from physiological changes in the
biparametric graph, the graph is fitted using a Gaussian mixture
model. Indeed, Gaussian mixture models have been shown to be
useful for identifying clusters in structured data [12]. Each
voxel is characterized by 2 variables corresponding to the x and
y values of the biparametric graph (see section 2.3.1). The
Gaussian mixture model assumes that the distribution of the
voxels in this biparametric space can be expressed as a mixture
of Gaussian distributions. An expectation maximization (EM)
approach is used to calculate the maximum likelihood
estimates of the parameters of these distributions. This results
in the classification of the voxels into several classes.
Let In be an initial image and Su be the associated subtraction
image, each consisting of N voxels. Let xi=(xi

In,xi
Su) be a 2-

component at voxel i, where i=1,...,N, xi
In is the initial image

intensity at voxel i and xi
Su is the subtraction image intensity at

voxel i. The data (x1,...,xN) R
2
 are assumed to be independent

and identically distributed with probability density functions :

  

f(xi ) == pk

k= 1

K

(xi μk , k )

where K represents different evolutions of tissues in the images
(Pk being the partition of the voxels), each being characterized

b y  a  G a u s s i a n  p r o b a b i l i t y  density

function
  

(xi μk , k )parameterized with a mean vector k

and a variance matrix k. and pk are the mixing proportions

(0<pk<1for all k=1,...,K and  k pk.=1).

Let c=(cik,i=1,...,N;k=1,...,K) be a partition with cik=1 if xi Pk and

0 otherwise.

With this convention, the parameter =(p1,...,pk-1,μ1,...,μk, 1,..., k)

is chosen to maximize the log-likelihood:

  

L x1,...,xN,cik( ) = ln cikpk (xi μk , k )
k= 1

K 

 
 

 

 
 

i= 1

N

Starting from an initial parameter ° and a partition °, an

iteration of the algorithm consists in computing the current

conditional probabilities tk(xi) (1 i N ;1 k K ) for the kth
mixture component and the current value of  (E step):

  

tk xi(( ) =

pk (xi μk , k )
k= 1

K

(xi μm , m )
m= 1

K

The M step then estimates (pk, μk, k) using the cluster Pk and

the conditional probability tk(xi).
Solving the mixture model described above requires an
estimate of the number of classes, an initialization of the model
parameters, and a stopping criterion. Initially, 4 classes are
considered: one corresponding to noise only, one including
voxels in which physiological changes not related to the
tumor(s) occured, one for tumor voxels responding to therapy,
and one for tumor voxels corresponding to tumor progression.
Simple criteria characterizing the absolute and respective
positions of voxels in the biparametric graphs are used to
determine how many of these classes are present in the graph.
Once the number of class C is approximately identified, a first
partition of the voxels into C classes is obtained based on the
absolute and relative position of the voxels in the biparametric
space, but without any assumption regarding the statistical
distribution of the data. This first classification is used as an
initialization step for solving the Gaussian mixture model
using the EM approach. A specific Gaussian mixture model i s
used, in which the volumes and shapes of the clusters can vary
between clusters, but the orientations are identical [13], which
constrains the expression of the variance matrices of the
clusters. The EM algorithm is stopped when the change in the
log likelihood is less than 0.001 between two successive
iterations or after 150 iterations.
The EM algorithm then results in a partition of the voxels into
2, 3 or 4 classes. An analysis of this partition based on the
relative size of the different clusters (tumor clusters are always
supposed to be smaller than clusters corresponding to voxels
affected by physiological changes only) and on the spread of
the Gaussian distributions is finally performed to identify the
tumor classes.
Finally, only the voxels corresponding to the tumor class(es)
are shown on the PET1(i) – PET2(i) dataset. The resulting
parametric 3D image thus only includes voxels in which tumor
changes different from non-tumor physiological changes
occurred.

2.4. Assessment of the parametric imaging method

To the best of our knowledge, no other methods for creating
parametric images of tumor changes in the context of therapy
monitoring have been described in the literature yet. To assess
the relevance of our approach, we thus compared regional
measurements made on the tumor volumes seen on our
parametric images with conventional criteria that can be used to
assess tumor changes.

Using our parametric images, the tumor volumes V affected by

changes in SUV can be easily deduced by counting the voxels
corresponding to each tumor in the parametric images.
Similarly, the maximum SUV change in the parametric images,

SUV, can be easily derived. These changes in tumor volumes

and tumor SUV were compared to those obtained using
conventional approaches consisting in measuring the tumor
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feature in each of the 2 scans, and then subtracting the two
values. For these conventional analyses, 3 tumor volume
estimates were considered:

 V40: the tumor volume was calculated from the number of
contiguous voxels (in the 3 dimensions) with an SUV
greater than 40% of the maximum SUV in the tumor.

 VB: the tumor volume included all contiguous voxels with
an intensity greater than a threshold that was a function of
the maximum SUV in the tumor and of the background
activity [14].

 VE: the tumor volume was manually drawn by a nuclear
physician.

For the conventional analyses, tumor SUV was considered as
equal to the maximum SUV in the tumor.

If the V obtained from the parametric images are consistent

with those obtained by subtracting the tumor volumes
measured on the first and second scans, we should have:

|max(V1-V2)|  V  max(V1,V2) (equation 1)

where max (V1-V2) denotes the maximum difference between
the tumor volumes observed in scans 1 and 2 over the three
volume estimates (V40, VB and VE), and max(V1,V2) denotes
the maximum volumes over the 6 volume estimates (3 volume
estimates for each of the two scans).

Similarly, if SUV are consistent with differences in SUV

measured from each scan, we should have:

| SUV|   |SUV1-SUV2| (equation 2)

where SUV1-SUV2 is the subtraction of the maximum SUV in
the tumor as seen in scan 2 from the maximum SUV in the tumor
as seen in scan 1.

3. RESULTS

In total, 15 pairs of consecutive PET/CT images were compared.

3.1. PET/PET registration

The registration of each of the 15 pairs of PET datasets based on
the CT registration was deemed satisfactory by visual
assessment and no misregistration artifacts were seen at the
edges of organs. The consistency measurements led to a mean
registration error (±1 sd) of 2.9 mm ± 3.3 mm, that is, on
average, less than the voxel size (3.91mm*3.91mm*4.25mm).

3.2. Parametric imaging

Figure 1 shows an example of biparametric graph describing the
changes between two consecutive PET scans. Each black dot
corresponds to a voxel in the analyzed volume. The figure also
shows the solution of the Gaussian mixture model: voxels in
the green region correspond to noise, voxels in the red region
correspond to voxels in which non-tumoral physiological
changes occurred between the two scans, and voxels in the blue
region correspond to tumor voxels that have responded to
therapy (SUV in the first scan larger than SUV in the second
scan, and high SUV in the first scan).

One slice through the PET1-PET2 volume is shown in Figure 2,
before (top) and after (bottom) identification of the voxels
affected by tumor changes. The bottom image is what we call the
parametric volume showing only regions in which tumor
changes have occurred. This image was obtained from the
analysis of the biparametric graph shown in Figure 1. In that
case, the tumor clearly responded to therapy.

Fig. 1. Biparametric graph describing the changes between two
consecutive PET scans (see comments in section 3.2).

Fig. 2. Result of the subtraction of 2 registered PET volumes (one slice
through the volume) and associated parametric volume after identification

of the tumor region through the Gaussian mixture model analysis of the
graph shown in Fig 1.

For the 15 pairs of PET scans that were compared, all tumor
changes reported in the physician report (9 responses, 6
progressions) were displayed on the parametric volume. No
false alarms (voxels in the parametric volume not
corresponding to tumor changes) were observed in the
parametric volumes.

3.3. Assessment of the parametric volumes

Table 1. Comparison of | SUV| and |SUV1-SUV2| (see equation 2) for all
pairs of PET scans.

Equation 2 was verified for all 15 pairs of images (Table 1),
suggesting that the maximum change in SUV deduced from the
parametric volume is consistent with the difference in
maximum SUV measured in each of the two scans to be
compared. This does not prove that the parametric volume
yields an accurate estimate of the SUV decrease or increase
between the 2 scans (especially given that partial volume effect
is not accounted for) but confirms that the parametric volume
bears similar SUV information as the original images while
retaining information at a voxel level (instead of averaging
over a region or looking at one voxel value only when
considering SUVmax).
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pairs PET scans 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

24.698.71 20.5319.952.86 5.5221.05 5.65 37.5628.780.85 2.97 1.360.65 1.17

max|V1-V2| 13.810.57 4.35 19.420.52 0.84 1.04 2.27 15.5 0.39 0.45 0.06 0.910.45 0.26

max(V1,V2) 29.399.84 14.6946.958.16 7.6418.0310.4446.0423.612.79 2.92 2.212.01 15.05

DV

Table 2. Comparison of max|(V1-V2)|, V and |max(V1,V2)| (see
equation 1) for all pairs of PET scans.

Equation 1 was verified for all 15 pairs of images except 3, 7
and 10 (Table 2). Looking closely at the 3 exceptions, it was
found that in two cases (3 and 7 in Table 2), the parametric
volume included voxels corresponding to atelectasy
developing close to the tumor site. Although the change does
not correspond to tumor growth or tumor regression, it was not
considered that having it displayed in the parametric volume
was a problem, especially given that it can be easily recognized
as the result of atelectasy. The third case for which the tumor
volume considered to have changed between the two scans was
larger on the parametric volume than the difference between the
two tumor volumes as measured from the two separate scans
might be explained by partial volume effect (PVE).

4. DISCUSSION AND CONCLUSION

We have presented a parametric imaging approach for
comparing successive PET scans in the context of patient
monitoring. It was first found that accurate co-registration of
two PET scans acquired several weeks apart was locally feasible
by using the CT data acquired during the same imaging session
as the PET data. We did not attempt to register the whole PET
datasets but considered only the relevant slices given the tumor
location, to facilitate the registration procedure. When several
tumor sites were relevant, registration of the set of slices
corresponding to each tumor was performed independently.
Although we did not precisely assess the registration accuracy
(work in progress), it was visually found sufficient to allow for
a subsequent comparison of the two PET datasets at a voxel
level.

The biparametric graphs obtained from the subtraction of the
two PET volumes to be compared showed typical features,
allowing for an easy crude recognition of patterns
corresponding to noise only, non-tumor physiological
changes, and tumor related changes (Figure 1). A precise
analysis of these graphs using a Gaussian mixture model made
it possible to precisely identify clusters corresponding to
noise, non-tumor physiological changes and tumor-related
changes. Focusing on tumor-related changes only, the
parametric images makes it possible for the physician to
immediately detect substantial changes in the tumor features
(SUV and volumes), without any preliminary identification of
the tumor regions (although the slices including the tumor
have to be selected before the registration procedure). A 3D
display of the parametric images showing the tumor change
superimposed with the CT is obviously possible (Figure 2).
Such representation might help identifying tumor region with
heterogeneous response.

The quantitative analysis of the parametric images performed so
far was extremely simple but was sufficient to check the
consistency of the SUV and volume values affected by changes
between the 2 scans derived from the parametric images with

those measured by comparing the parameters measured in each
of the 2 PET volumes. More detailed quantitative analysis of
the parametric images will be developed, to account for partial
volume effect affecting the parametric images.

Fig. 3. 3D display of the parametric images fused with the initial CT.

The parametric imaging method has been successfully applied
to 15 pairs of PET/CT scans in lung cancer patients. More
evaluation is needed to test the robustness and the value of the
approach in a broader range of applications. Tests on patients
with lymphomas are currently under way.
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